AZ EGÉSZTESTSZÁMLÁLÓ KALIBRÁCIÓJA ÉS KIÉRTÉKELÉSI ELJÁRÁSAINAK FEJLESZTÉSE

Kocsonya András^{*}, Pántya Anna, Szabó Dezső, Harangozó Imréné, Zagyvai Péter, Endrődi Zsuzsa HUN-REN Energiatudományi Kutatóközpont, 1221 Budapest, Konkoly-Thege Miklós út 29-33. ^{*}kocsonya.andras@ek.hun-ren.hu

> A kézirat beérkezett: 2024.03.26. Közlésre elfogadva: 2024.05.29.

The whole-body-counter of the Centre for Energy Research is in operation since 60 years. The paper summarizes the main developments of the last decade. A new HPGe detector was installed, and efficiency calibration was performed by the new detector for a wide body-weight range. The detections limits are compared for the scintillation and semiconductor detector. New semi-automatic spectrum evaluation method was developed for the scintillation detector.

Keywords: internal dose, whole-body-counting, incorporation, spectra-evaluation, efficiency-calibration

Az Energiatudományi Kutatóközpont egésztestszámláló berendezése idén, 2024-ben 60 éves. A cikk összefoglalja az elmúlt évek főbb fejlesztéseit. Az egésztestszámlálóba új HPGe detektor lett beépítve, amivel széles testtömeg-intervallumra kiterjedő hatásfok-klaibráció történt. Összehasonlítottuk a szcintillációs és félvezető detektorokkal elérhető kimutatási határokat. A szcintillációs detektorral felvett spektrumokhoz új, jól automatizálható kiértékelési eljárást dolgoztunk ki.

Kulcsszavak: belső sugárterhelés, egésztestszámlálás, inkorporáció, spektrumértékelés, hatásfok-kalibráció

BEVEZETÉS

Az Energiatudományi Kutatóközpont belső sugárterhelés meghatározására szolgáló egésztestszámláló berendezését 60 évvel ezelőtt, 1964-ben helyezték üzembe és azóta is folyamatosan működik [1]. Az évforduló alkalmat ad arra, hogy összefoglaljuk az elmúlt időszak eredményeit, fejlesztéseit.

Az egésztestszámlálóval évente több mint 100 mérést végeznek. A KFKI telephely azon dolgozói, akiknek munkája során a belső sugárterhelés lehetősége felmerül, rendszeresen ellenőrző mérésen esnek át, rutinszerűen évente, illetve inkorporáció gyanúja esetén soron kívül is.

Az egésztestszámlálóban 3 detektor van: 2 db NaI(Tl) szcintillációs detektor, egy az ágy felett, egy pedig alatta. Kristályméretük 6"×4". Az ágy felett emellett egy félvezető detektor is van. A félvezető detektor együtt mozog a szcintillációs detektorral, azonban ahhoz képest oldat van beépítve. Emiatt az ágy oldalirányú mozgatása szükséges ahhoz, hogy a megfelelő detektor kerüljön a mérési pozícióba [2].

ÚJ HPGE DETEKTOR BEÉPÍTÉSE ÉS ANNAK KALIBRÁCIÓJA

2012-ben az egésztestszámlálóba új nagytisztaságú germánium félvezető (HPGe) detektor került beépítésre a korábbi meghibásodott detektor helyére. Az új detektor típus: Canberra GX3018 típusú, relatív hatásfoka 30%.

Az új detektor hatásfokkalibrációját flaskafantommal végeztük. A 2012-ben elvégzett kalibráció során két flaskakészletet használtunk.

A KFKI AEKI ¹⁵²Eu flaskafantom-készlet az Am – 241 / Eu – 152 – OMH-11105 jelű standard hígításával készült 1994-ben. Össztömege 100 kg. A készlet referencia időpontja 1994.01.01. 1 flaska aktivitása az alábbi táblázatban látható.

1. táblázat. Az 1994-es KFKI AEKI flaskafantom aktivitása (1 flaska)

nuklid	felezési	idő	aktivitás (kBq)
^{241}Am	432.2	év	0.084
^{152}Eu	13.537	év	3.540

Csekély aktivitása miatt az 241 Am – hosszú felezési ideje ellenére – nem használható.

Az OSSKI-tól kölcsönkapott flaskafantom-készlet egy Eckert & Ziegler gyártmányú radioaktív hiteles anyagminta hígításával készült. Bizonylata szerint az alábbi radionuklidokat tartalmazza.

2. táblázat. Az OSSKI flaskafantom-készlet aktivitása

		-	
nuklid	felezési	idő	aktivitás (kBq)
⁵¹ Cr	27.7	nap	32.27
57 Co	271.79	nap	0.77
^{60}Co	5.27	év	3.68
^{85}Sr	64.84	nap	4.81
⁸⁸ Y	106.65	nap	7.58
^{109}Cd	462.6	nap	20.17
^{137}Cs	30.07	év	3.24
^{139}Ce	139.64	nap	1.01
$^{241}\mathrm{Am}$	432.2	év	3.64

A megadott aktivitások a teljes – 90 kg-os – készletre vonatkoznak.

A készlet referencia időpontja 2010.09.01., azaz a mérés idején 2 éves volt A készítés óta eltelt idő alatt a rövidebb felezési idejű nuklidok már elbomlottak. Emiatt a kalibrációhoz csak a ⁶⁰Co, ¹⁰⁹Cd, ¹³⁷Cs és ²⁴¹Am radionuklidok voltak felhasználhatók. Bár a ⁵⁷Co felezési ideje kb. 3/4 év, a kezdeti aktivitás nagyon kicsi volt, ezért a méréskor már nem volt kimutatható.

A kalibráló mérések fekvő "SCANNING END STOP" geometriában történtek. A mérési idő T = 1293 s volt. A jobb statisztikus pontosság miatt a OSSKI flaskafantommal a fenti, szokásos mérési idő kétszeresével T = 2586 s idővel is történtek mérések.

A hatásfok energiafüggése az alábbi ábrán látható. Az ábrákon eltérő módon vannak jelölve a két fantomból származó pontok. Bár a két fantom a felhasznált flaskák különbözősége miatt kismértékben eltér egymástól, azt feltételezzük, hogy a belőlük kapott hatásfokok eltérése elhanyagolható lesz. Ezt a feltételezésünket alátámasztja, hogy a két fantomból kapott pontok azonos függvényre illeszkednek (1. ábra). A két különböző radioaktív hiteles anyagminta hígításával készült kalibráló készlettel kapott hatásfokok egy görbére illeszkedése egyben a bizonylatban foglalt aktivitásokat is kölcsönösen ellenőrzi.

1. ábra. A Canberra GC3018 HPGe detektor hatásfoka 70 kg-os testtömeg esetén

Korábban a kalibráló mérések 50–100 kg testsúlyokra készültek, 10 kg lépésekben, de erre ekkor nem volt elegendő kapacitás. Azonban szükség lenne hatásfok-kalibráció 100 kg feletti testsúlyok esetére is, mivel a vizsgálatok során rendszeresen kell ilyen testsúlyú embereket is mérni.

Kalibráció 2018-2022-ben

A detektor újabb kalibrációjához új flaskakészlet készült, a MIX 2018-014 jelű a Budapest Főváros Kormányhivatala Metrológiai és Műszaki Felügyeleti Főosztály által biztosított radioaktív hiteles anyagmintából. A hiteles anyagminta műbizonylatban szerinti aktivitása az alábbi táblázatban olvasható.

3. táblázat. A MIX 2018-014 jelű radioaktív hiteles anyagminta aktivitása

MIX 2018-014	A (kBq)
²⁴¹ Am	396,1
¹⁵² Eu	502,4
¹³³ Ba	484,5
⁶⁰ Co	980,8
¹³⁷ Cs	696, <mark>0</mark>
ref. date:	2018-06-01

A minta hígításával 120 db 1 literes flaska lett megtöltve. A hígítási folyamatot az alábbi (2. számú) ábra szemlélteti.

2. ábra. A MIX 2018-014 radioaktív hiteles anyagminta hígítása

A méréseket változatlanul fekvő scanning-end-stop geometriában végeztük. A flaskákból 10 kg-tól 120 kg-ig állítottunk össze kalibráló fantomokat, 10 kg lépésben. A jobb mérési statisztika érdekében a 70 kg-os fantommal a szokásos scanning-end-stop mérést 1/12-ed részére lelassítva is végeztünk méréseket. Ezt 8-szor megismételtük, így az összeidő 124 128 s lett (1,44 nap).

A megfelelő háttérlevonás érdekében egy hétvégés, hosszú mérési idejű háttérspektrumot is felvettünk: T = 240 000 s (2,78 nap). Ebben csak egyetlen mesterséges radionuklid látható: ¹³⁷Cs (3. ábra). A szokásos 1293 s-es mérés alatt ez a csúcs <2 beütés lenne.

3. ábra. Az egésztestszámláló HPGe detektorának háttérspektruma

A 70 kg-os fantommal elvégzett hosszú idejű méréssel a kalibráló minta 5 nuklidjából 38 gamma-vonalat lehetett felhasználni a kalibrációhoz a 31 keV – 1457 keV energiaintervallumban (4. ábra).

4. ábra. A hosszú idejű kalibráló spektrumok alapján szerkesztett hatásfokgörbe

A 10 kg – 120 kg testtömegekre felvett hatásfokgörbék az alábbi (5. számú) ábrán láthatók.

5. ábra. Az egésztestszámláló HPGe detektorának hatásfoka 10 kg - 120 kg testtömegekre

A detektor hatásfokának energiafüggését az alábbi függvénnyel írjuk le:

$$\varepsilon(E) = \operatorname{erfc}\left(-\frac{E - E_0}{E_{\Lambda}}\right) \times \left(A_1 \cdot \exp(-\frac{E}{E_1}) + A_2 \cdot \exp(-\frac{E}{E_2})\right)$$

A hatásfokot leíró függvény paramétereinek testtömegtől való függését empirikus úton közelítjük. Ezáltal bármilyen testtömeg és fotonenergia esetén meg lehet határozni a hozzá tartozó hatásfokot.

A félvezető detektor esetén rutin mérések kiértékelése általában a Genie-2000 programmal történik [5]. Sajnos a Genie-2000 nem teszi lehetővé, hogy a hatásfokfüggvény paramétereit közvetlenül bevigyük a programba. Emiatt erre egy "kerülő" eljárást dolgoztuk ki, amivel a Genie-200 programot rá lehet venni arra, hogy az általunk mneghatározott hatásfokokkal számoljon. Ennek részletei a "Környezeti minták gamma-spektrometriás vizsgálata" című ismeretfelújító előadásban és cikkben vannak leírva.

6. ábra: A hatásfokot leíró függvény paramétereinek függése a testtömegtől

A SZCINTILLÁCIÓS ÉS A FÉLVEZETŐ DETEKTOR KIMUTATÁSI HATÁRÁNAK ÖSSZEHASONLÍTÁSA

A félvezető detektorra elvégzett kalibráció és a szcintillációs detektor korábbi kalibrációját ellenőrző mérés, illetve a háttérspektrumok alapján meghatároztuk a két detektor kimutatási határait néhány gyakorlatban lényeges radionuklidra.

A gyakorlati szempontból lényeges radionuklidok többségére a félvezető detektorral valamivel jobb kimutatási határ érhető el, mint a szcintillációssal, mivel a félvezető detektor jobb energiafelbontása és alacsonyabb háttere kompenzálja a lényegesen kisebb térfogatot.

A ⁴⁰K esetén valamivel rosszabbnak bizonyult a félvezető detektor kimutatási határa a szcintilációshoz képest. Ez elsősorban a háttérlevonás miatt van: mivel ⁴⁰K a környezetben és így a detektor hátterében is megtalálható, a kisebb térfogatú detektor esetén a kisebb beütésszámok különbsége miatt lehet a különsbég bizonytalansága jelentősebb, ami korlátozza a kis aktivitások megbízható detektálását. Az emberi szervezetben szokásan előforduló – jellemzően 3–5 kBq – ⁴⁰K esetén ez azonban nem okoz problémát, az megbízhatóan kiértékelhető a félvezető detektorral is.

Bár a kimutatási határok összehasonlítása alapján látható, hogy az új félvezető detektor használata esetén – a ⁴⁰K előbb tárgyalt esetét kivéve – nem nagyon van olyan gyakorlati szempontból lényeges radionuklid, aminél a szcintillációs detektor jobb eredményt adna, mint

a félvezető. Azonban a szcintillációs detektor előnye, hogy nem igényel hűtést, így abban az esetben is üzemképes marad, ha cseppfolyós nitrogén valamiért nem állna rendelkezésre.

Nuklid	Energia (keV)	Kimutatási határ (Bq)		HPGe / NaI
		NaI	HPGe	arany
²² Na	1274,5	94	83	89%
⁵⁷ Co	122,1		93	
⁶⁰ Co	1173,2	99	66	66%
^{99m} Tc	140,5		79	
¹²⁵ I	27,4			
¹³¹ I	364,5	145	98	68%
¹³⁷ Cs	661,7	120	92	77%
⁷ Be	477,6	1101	805	73%
⁴⁰ K	1460,8	874	2321	265%
¹⁹² Ir	316,5	153	76	50%
⁵⁴ Mn	834,9	104	63	60%
⁶⁵ Zn	1115,5	187	153	82%

4. táblázat: A szcintillációs és a félvezető detektor kimutatási határai

SPEKTRUMÉRTÉKELŐ ELJÁRÁS AZ EGÉSZTESTSZÁMLÁLÓ SZCINTILLÁCIÓS DETEKTORÁHOZ

A szcintillációs detektor által adott spektrum jellemzője, hogy a mérsékelt energiafelbontás miatt a csúcsok átlapolnak egymással. Ez megnehezíti a csúcsok egyenkénti kezelését és csúcs alatti folytonos háttér egyszerű levonását, ezzel a nettó csúcsterület meghatározását.

Az új félvezető detektor használata mellett is a szcintillációs detektor továbbra is használatban maradt, így ennek spektrumainak kiértékelésére is kell egy megbízható kiértékelési eljárás, ami lehetőleg kevés emberi erőforrás mellett biztosítja a spektrumok értékelését és azoknak az eseteknek a kiszűrését, amikor inkorporáció gyanúja merül fel és amivel részletesebben foglalkozni kell.

A most ismertetett eljárásban egy gyakorlatban könnyen alkalmazható matematikai modellel írja le a NaI detektorral felvett spektrumokat, amelyből a további feldolgozáshoz, értékeléshez szükséges paraméterek könnyen kinyerhetők. A folytonos hátteret leíró függvény:

$$BG(i) = \operatorname{erf}\left(\frac{i-i_0}{A_0}\right) \times \left(A_1 \times \exp\left(-\frac{i}{b_1}\right) + A_2 \times \exp\left(-\frac{i}{b_2}\right)\right)$$

Az exponenciálisan lecsengő folytonos háttér egy kb. 100 keV energiáig terjedő gyorsabb lecsengésű szakaszból és egy e feletti lassabban lecsengő szakaszból áll. Ez indokolja a második tényezőben a két exponenciális tag alkalmazását.

A csúcsokat leíró függvény:

$$p_j(i) = a_j \times \exp\left(-\frac{(i-c_j)^2}{2 \cdot \sigma_j^2}\right)$$

A teljes spektrum a folytonos háttérből és az ezekre rátevődő csúcsokból áll:

$$f(i) = BG(i) + \sum_{j=1}^{k} p_k(i)$$

A leírt függvénnyel való illesztés után a spektrumok további feldolgozásához szükséges adatok az illesztett paraméterekből számíthatók ki. A csúcsterület: AREA = $2,5066 \times a_j \times \sigma_j$,

A detektor háttérspektrumában a természetes radionuklidok, a ⁴⁰K, ²²⁸Ac, ²¹⁴Pb és ²¹⁴Bi – utóbbi kettő radon-bomlástermékek – gamma-vonalai, valamint az 511 keV-es annihilációs csúcs láthatók. Az alkalmazott modellbe az alábbi gamma-vonalakat vettük fel.

^{40}K	214 Pb	$^{214}\mathrm{Bi}$	^{228}Ac	annihilációs csúcs
1460.8 keV	351.9 keV	609.3 keV	911.2 keV	511.0 keV
	295.2 keV	1764.5 keV	$969.0 \ \mathrm{keV}$	
	242.0 keV	1120.3 keV	338.3 keV	
		1238.1 keV	$964.8 \ \mathrm{keV}$	

Az azonos radionuklidhoz tartozó gamma-vonalakat egy vonalcsoportba fogtam össze, melynek tagjai között az intenzitásarányt rögzítjük. Az intenzitásarányokat a ²¹⁴Bi és a ²¹⁴Pb esetén egy hosszú idejű háttérméréséből vettük. A ²²⁸Ac esetén csak a 911,2 keV-es csúcs volt megbízhatóan megilleszthető. Emiatt többi csúcsának intenzitását a táblázatokból vett vonalgyakorisággal vettük, korrigálva a detektor hatásfokával a kérdéses energián.

A spektrumot leíró függvénynek így – alaphelyzetben – 14 szabad paramétere van:

- · a folytonos háttér 6 paramétere: A_0 , i_0 , A_1 , A_2 , b_1 , $b_{2;}$
- · az energiakalibráció paraméterei: Zero, Gain;
- · az energiafelbontás paraméterei: s₀, s₁;
- · a vonalcsoportok intenzitására jellemző a_i paraméterek (4 vonalcsoport \rightarrow 4 db).

A fenti függvényben A_1 , A_2 és ai paraméterek lineárisak, míg a többi nem. A spektrumillesztések a Levenberg-Marquardt algoritmus alapján a gnuplot [4] programmal történtek. A háttérméréssel szemben személyek méréseknél a háttérspektumhoz adódnak hozzá az inkorporált radionuklidok gamma-vonalai. Normál esetben csak ⁴⁰K szokott előfordulni, így a hozzá tartotó 1460.8 keV-es csúcs növekedik meg a háttérhez képest. A spektrum illesztésénél új gamma-vonalaz az illesztési modellbe nem kell felvenni. Amennyiben a vizsgált személyben más, inkorporált gamma-sugárzó radionuklid van mérhető mennyiségben, akkor annak gamma-vonalai megjelennek a spektrumban. Erre a következő részben látunk példát.

Az illsztés elvégzése után a program előaállítja a mért spektrum és az illesztés különbségét, azaz a maradék-spektrumot. Ha az csak a Poisson-szórásból szármaszó véletlen ingadozást mutatja, akkor az illesztés elfogadható és a spektrumban valószínűleg nincs olyan radionuklid, ami nincs benne az illesztési modellben. ha azonban modellben nem szereplő gamma-sugárz van jelen, akkor a maradék-spektrumban határozott eltérés keletkezik, amit elég könnyű akár szemre, akár az illesztés jósága alapján matematikai úton kiszűrni.

Egy ⁶⁵Zn inkorporáció esete

A munkakörüknél fogva belső sugárterhelés kockázatának kitett dolgozók éves szűrővizsgálata keretében mért egyik személy spektrumának értékelésekor feltűnt, hogy a ²¹⁴Bi 1120,3 keV-es csúcsa a szokások vonalarányokkal nem illeszthető meg és a maradék-spektrumban egy csúcs keletkezik.

7. ábra: Maradék-spektrum az illesztési modellben nem szereplő radionuklid esetén

A szcintillációs detektor korlátozott energiafelbontás miatt az csupán az energiából a nuklid nem azonosítható egyértelműen. A vizsgált személy által végzett munkák jellege alapján a szóba jöhető radionuklidok közül a ⁶⁵Zn a legvalószínűbb. Ennek 1155,55 keV-es csúcsát betéve a modellbe a maradék spektrumban levő csúcs eltűnik és az illesztés mindenütt megfelelő lesz.

8. ábra: A szcintilláció detektorral felvett spektrum illesztése ⁶⁵Zn inkorporáció esetén

A vizsgált személynél a megismételtük a mérést félvezető detektor alkalmazásával, amely igazolta mind az azonosított nuklidot, mind a meghatározott aktivitást.

egésztest-mérés scanning end stop geometriában

9. ábra: ⁶⁵Zn inkorporáció félvezető detektorral mérve

Mérés radioizotópos terápia után

2013-ban lehetőségünk nyílt egy radiojódos pajzsmirigy-kezelésen átesett személy többszöri egésztestmérésére, aki önként jelentkezett a méréssorozat alanyának. A kezelés során egyszeri alkalommal 2,4 GBq ¹³¹I izotópot kapott tabletta formájában. A kezelése utáni 30., 36.,,50., 57., 69., 107. napon végeztünk méréseket, egészen a ¹³¹I kimutatási határ alá csökkenéséig.

10. ábra: ¹³¹I terápián átesett személy spektrumai a beadás után 30 és 107 nappal

Itt a korábbi esetektől lényegesen nagyobb aktivitás került a szervezetbe, ennek megfelelően a mesterséges radionuklidtól jövő intenzitás lényesen nagyobb, mint a természetes radionuklidoktól eredő.

A detektor pályája mentén változó holtidő hatása

A környezetellenőrző mérések esetén és általában a legtöbb gamma-spektroszkópiával végzett mérésünk során a detektor élőideje (LT) szokott állandó értékre beállítva lenni. Így a valós idő (RT) valamivel hosszabb ennél, a holtidőtől függően. Az egésztestszámlálónál más a helyzet: itt a detektor mozgatása valós időben meghatározott program szerint történik, így a valós idő van ezzel megegyezőre állítva. Az élőidő a holidő miatt ennél valamivel rövidebb lesz. Mivel az egésztestszámlálóval végzett mérések során a holtidő jellemzően igen kicsi, így az eltérés nem jelentős.

Tegyük fel, hogy a mért személy tartalmaz egy adott szervet érintő (helyi) inkorporációt, pl. belégzés útján a tüdőben rakódott le valami. Amikor a detektor az inkorporációt tartalmazó testrész felett jár, megnövekszik a holtideje. Így itt az előidő csökken, a detektált beütésszám

emiatt kisebb lesz. A teljes mérés holtidején ez nem feltétlenül tükröződik, mert az inkorporációtól távolabbi testrészeknél a holtidő a szokásos érték közelébe csökken és a végén a teljes mérési időre vetített átlagos holtidőt látjuk. Érdemes meggyőződni róla, hogy az egésztestszámlálás során előfordulhatnak-e elő olyan aktivitások, amikor ez a jelenség számottevő lehet.

Az egésztestszámlálásnál szokásosan alkalmazott fekvő scanning-end-stop geometriát vizsgáljuk. A vizsgált személy vagy fantom az ágyon fekszik. A detektor az ágy felett helyezkedik el H magasságban. A detektor a mérés során L hosszúságú pályán mozog v sebességgel.

A fantom belsejében helyezkedik el – az egyszerűsítés érdekében – egy pontszerűnek tekintett sugár- forrás, az ágy síkja felett h magasságban. Számoljunk a következőkben azzal, hogy a sugárforrás a detektor pályájának felénél van (x = 0).

11. ábra: mérési geometria mozgó detektor esetén

A sugárforrás által kibocsátott sugárzás intenzitása a detektor helyén (részecskefluxus) a sugárforrástól való távolság négyzetével fordítottan arányos: $I \propto 1/r^2$. Az *r* távolságot a Pitagorasz-tétellel kifejezve az *x* helyzetben levő detektor által észlelt intenzitás:

$$I(x) = I_{\max} \times \frac{1}{1 + \frac{x^2}{(H-h)^2}}$$

A detektor által észlelt beütésszám a detektor L hosszúságú úton történő mozgása alatt:

$$Y = \int_{-\frac{L}{2}}^{\frac{L}{2}} I(x)(1 - DT(x))dt = \frac{1}{v} \int_{-\frac{L}{2}}^{\frac{L}{2}} I(x)(1 - DT(x))dx$$

A detektor teljes élőideje az L hosszúságú úton történő mozgása alatt:

$$LT = \int_{-\frac{L}{2}}^{\frac{L}{2}} (1 - DT(x)) \frac{dx}{v} = \underbrace{\frac{L}{v}}_{RT} - \underbrace{\frac{1}{v} \int_{-\frac{L}{2}}^{\frac{L}{2}} DT(x) dx}_{

}$$

Az első tag a mérés valós ideje (amennyi idő alatt a detektor megteszi az L hosszúságú pályát), míg a második tag a detektor pályájára átlagolt holtidő. Ezt a holtidőt fogja mutatni az analizátor összegspektrum gyűjtése esetén.

Összehasonlítjuk a idealizált holtidő nélküli detektor és a (2) és (3) képletek alapján véges holtidővel rendelkező detektor által adott időegységre jutó beütésszámokat. Az egyszerűség kedvéért számoljunk azzal, hogy a holtidő egyenesen arányos az intenzitással és a detektor alatti pozícióban (x = 0 cm) a sugárforrás 30% holtidőt okoz.

Ekkor a teljes mérési időre átlagolt holtidő 12% lesz (a pálya közepén 30%, a két végén 3%). A (2) és (3) képletek alapján az integrálokat numerikusan kiszámolva a (4) képletből a valódihoz képest 7%-kal kisebb aktivitást kapunk. Ez a csökkenés még belefér az egésztestszámlálótól elvárható mérési pontosságba, mivel más bizonytalansági tényezők is okoznak hibákat.

Ez a számítás a KFKI egésztestszámlálójában használt nem kollimált detektor esetére vonatkozik, ahol a detektor, így a számunkra lényeges szögtartományban az irányfüggése nem számottevő. Más a helyzet, ha a detektor kollimált, azaz a ferde szögben beeső fotonokra árnyékolva van. Tegyük fel, hogy az - egyébként azonos tulajdonságokkal bíró detektor – csak egy 30° félnyílásszögű kúpban lát előre, azaz lefelé. Ekkor a teljes mérési időre átlagolt holtidő 5%-ra csökken, mivel a pálya két végén szinte 0 lesz ekkor a holtidő, míg a pálya közepén ekkor is 30%. Az aktivitás 23%-kal lesz kisebb a valósnál. Ez már jelentősebb csökkenés, mint az előbbi nem kollimált eset.

ÖSSZEGZÉS

Bár az elmúlt időszakban a sugárvédelem és dozimetria területén a mérési módszerek fejlesztésére rendelkezésre álló, elsősorban emberi erőforrás megcsappant, az éppen rendelkezésre álló létszámmal igyekeztük egyrészt a fennálló mérési igényeknek eleget tenni, másrészt a gyakorlatban felmerült problémákra és kihívásokra válaszolva a mérési és kiértékelési módszereken szerény mértékben fejleszteni. Az új fejlesztések azonban hamar átkerültek a gyakorlatba, hiszen a saját munkánkat könnyítjük meg ezzel. Ugyanakkor a megrendelők igényeire is megbízhatóbb, pontosabb válaszokat tudunk adni, különöseb ha az alkalmazott módszerek saját fejlesztéseink, aminek részleteit ismerjük, és nem feketedobozként használjuk.

IRODALOM

- [1] Andrási Andor: Belső sugárterhelés meghatározása egésztest-számlálással. Fizikai Szemle, 2006/9.
- [2] Andrási Andor, Beleznay Ferencné, Urbán János: A belső sugárterhelés egésztestszámlálós meghatározási módszerének továbbfejlesztése a KFKI-ban
- [3] Radioaktív izotópok emberi szervezetben történő meghatározására létesített egésztestszámlálós mérőrendszer továbbfejlesztése, Egységes mérő és kiértékelő

szoftver kifejlesztése és az új mérőrendszer kalibrálása, Beszámoló jelentés KFKI Atomenergia Kutatóintézet, Budapest, 1994. november

- [4] G N U P L O T Version 4.6 Thomas Williams, Colin Kelley et. al. <u>http://www.gnuplot.info</u>
- [5] Genie 2000 Gamma Acquisition & analysis V3.2.1, Aug 26, 2009, Canberra Industries

Készült a SOMOS Alapítvány támogatásával.