

Centre for Energy Research

The Virtual Radi@active Source System (VRSS) Reaching the impossible....

Designed & developed by EK for the MEST (Mobile Expert Support Team) + Worldwide

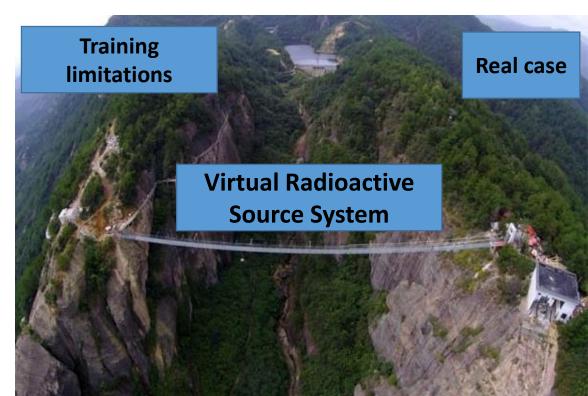
The VRSS Team: Károly Bodor, Zsolt Csalótzky, Attila Gulyás, György Nagy

- The developed virtual gamma system is a true radiation-free, real action (i.e., not computer-run) simulation system using electronic hardware and software tools. The system is intended for creating any kind of radiation detection condition implemented without real radiation, real source, real measuring detector.
- It includes a ("virtual") hardware/electronic source and detector, as well as a software measurement scenario and user interface display on a computer. A user performs/experiences the simulation, which is controlled by the operator. The system can be also programmed for alpha, beta, neutron; dose, dose-rate, count-rate, spectra identification detection and surface contamination (alpha, beta) detection. The system can be programmed for any kind of shielding object and its factors to the source and map (e.g.: concrete wall, barrier, packaging). Shielding objects and factors can be represented virtually on the simulation operation area.
- Operator can see dose rate map and manipulate the simulation by adding/removing shielding. Initial software components and hardware prototypes have been implemented as the first phase of the project. These developments were mainly intended to assess the possibilities and boundaries of the simulations.

- At the training sites, only "D" physical protection level sources can be used, by the licence of the Hungarian Atomic Energy Authority (HAEA)
- At the trainings, demonstrations it is strictly **not allowed** to use high dose rate areas and surface contaminated objects by the ALARA principle!
- The demonstrations and trainings have limits!!!

- It is impossible to prepare for rare but very dangerous cases like high activity source goes out of shielding, or decontaminating a surface contaminated object.
 It means a well trained MEST member has <u>no any practice for that cases</u>.
- Also at a training, a real source can be damaged and it can contaminate the training participant, it was happened (not at EK[©]).

So beyond a proper license the safety cannot be 100%. But never???!!!



There is a gap between real cases and training possibilities, the bridge of the gap is the main goal.

The goals:

- Is to design a system that behaves like a real
- radioactive source
- radioactive contamination
- dose rate meter
- surface contamination meter
- nuclide identifier.
- Maximizing the radiation protection safety/security.
- Step over the limitations.

- Opportunity to open the source searchning for everyone, everywhere, everytime.
- No licenese needed.
- Design the system to be user friendly and be able to operate easily.

- Trainings with "regular" cases
- Trainings for rare, very dangerous cases (high dose rate areas, contaminated objects)
- Trainings for beginners
- Testing the MEST members
- Training the trainers, judges with designed placement of hidden mistakes
- Training the authorithy persons (identify mistakes by the laws, RP ordinances, standards)
- Train the UGV, drone operators for locating the "radioactive" sources
- Do this at maximum Radiation Porotection safety/security!!!

Real radioactive source

Real case

Measures Count rate (in count per sec) and calculates the dose rate

 $\Delta H / \Delta t = H = DCF \times A / r^2 \cong H^*(10)$

A: activity r: distance H: calculated dose rate DCF: dose coefficient factor H*(10): measured dose rate

Gamma radiation

nnnn

Real dose rate meter

Virtual case

Measures distance every sec between the emitter and transceiver and calculates the dose rate

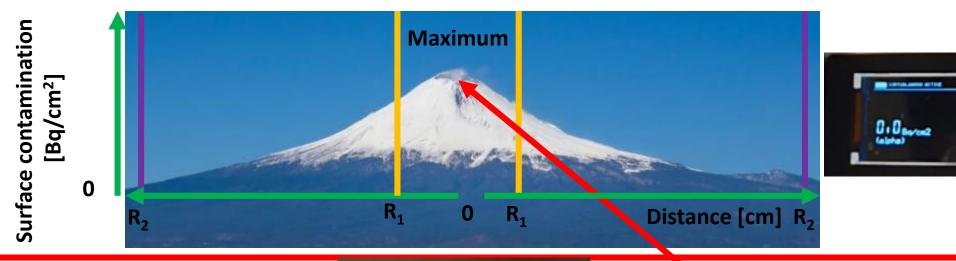
 $H_{real} \cong H_{virtual}$

At every sec, every distance

Virtual source (Emitter)

Radio waves

Virtual dose rate meter Transceiver



To imitiate surface contamination on a table the virtual surface contamination meter has a special equation: It measures the distance every sec between emitter & transceiver, between R_1 -0 cm the contamination is maximum, between R_1 - R_2 the contamination is proportional, after a distance R_1 the contamination is 0.

Table

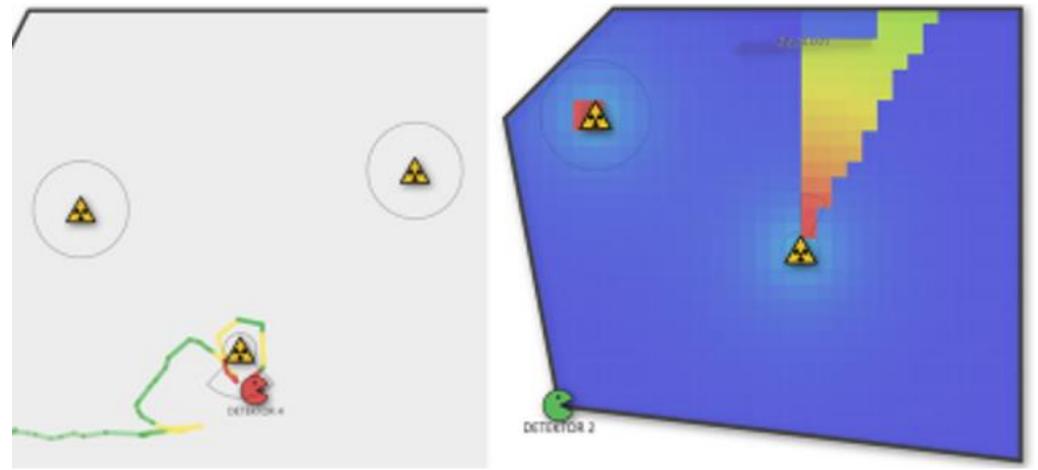
How to operate???

- Turn on the Virtual Radioactive Source System (VRSS).
- Design the scenario/simulation:
- Define the sources
- Geometry

Energy Research

- Shielding
- Add the source informations into the user interface and place the virtual radioactive source and the shielding.
- Let's go!!!!
- The system are automatic only at the proper time the VRSS operator have to switch the values.
- The system's time for changing is 1 sec.
- It can be operated from smartphone.
- The VRSS operator can follow the training from far away and control the simulation.

User interface


Virtual Gamma Status Dash Measure state 028:29 MasterTag state active mastertags: 2	hboard Logs Config Field Dashb Current field: csütör Sources	0 0 Maxim të surface				es • Fields • Decreasing the surface contamination value from maximum to background till this distance		
detektor 1 (0x677E)	LÖTTY 1 nagyobb lötty	DISABLED	ADDRESS: 0x6779		ÖTTY 2 ebb lötty	ENABLED	ADDRESS: 0x6763	
DOSERATE: DOSE: 0.1 μSv/h 0 μSv	DOSE CONSTRAINT: 0	CONTAMINATION DISTANCE: 150 mm	CONTAMINATION TRANSITION DISTANCE: 250 mm	100 C 100 C 100 C	DOSE STRAINT: 0	CONTAMINATION DISTANCE: 150 mm	CONTAMINATION TRANSITION DISTANCE: 250 mm	
DISTANCES 0x6763 0x6779 1.99 m 3.11 m	LAST SEEN: 14:48:21 SELECTED SURFACE		BATTERY: No data		LAST SEEN: 14:48:21		BATTERY: No data	
LAST SEEN: BATTERY: Surface contamination values	17 Bq/cm² alap	12 Bq/cm² leszedés 1	9 Bq/cm² leszedés2		3q/cm² alap	7 Bq/cm² leszedés 1	5 Bq/cm² leszedés 2	
after decontamination phases	7 Bq/cm² leszedés3	5 Bq/cm² leszedés4	4 Bq/cm² leszedés5		<mark>3q/cm²</mark> zedés 3	1 Bq/cm² leszedés4		

On-line, real time on route dose rate monitoring & dose rate map can be displayed!

With the virtual-virtual mode no emitter (virtual hardware source) should be placed on the training site.

Different kind of virtual-virtual radioactive sources can be programmed at the same time.

- Background measurement real vs. Virtual dose rate meter
- Dose rate measurement from different at given distances from real vs. Virtual source
- Nuclide identification of real vs. Virtual source
- Virtual dose rate measurements of a high activity radioactive source without shielding, producing very high dose rate field + dose rate measurement using shielding
- Surface contamination background measurements real vs. Virtual surface contamination meter
- Surface contamination measurements real vs. Virtual surface contamination meter
- Measurement of the results of the decontamination process with virtual surface contamination meter
- Demonstrating the virtual-virtual source mode + dose rate map & on-line, real time on route monitoring

Centre for Energy Research

With EK everything is possible, even that means anything...

Thank you for your attention!