

Mara-Georgiana POPOVICI

Dosimetry Laboratory

mara.popovici@eli-np.ro

Preliminary dosimetry measurements within high power laser-driven experiments at ELI-NP

Content

- > ELI-NP cutting-edge laser technology meeting advanced NP
- > Radiation Safety and Dosimetry for ELI-NP
- > Measurements from ELI-NP experiments
- > Conclusions and future perspectives

ELI-NP in a Nutshell

HIGH-POWER LASER SYSTEM 2 x 10 PW ultra-short pulse laser arms

(Chirped Pulse Amplification method by Nobel Prize Winners Gerard Mourou and Donna Strickland)

BRILLIANT ENERGY TUNABLE GAMMA-RAY BEAM SYSTEM

- The most advanced research facility in the world in the field of photonuclear physics, pioneering the first-ever integration of high-power lasers with nuclear physics;
- Hosting two laser arms able to deliver laser pulses
 @ 100 TW, @1 PW, @10 PW;
- 5 departments and 7 research laboratories providing support for laser-driven experiments;

Generating radiation fields, source terms and scenarios considered for RP simulations

Principle of laser driven acceleration Louise Willingale, Laser driven acceleration of protons and ions, Wakefield Accelerators Sesimbra, Portugal, 18th February 2019

Visual repres. of Target Normal Sheath Acceleration (TNSA) (*Lucian Tudor*, *Methods for characterization of particle pulses* generated by high power laser interaction with matter)

Current status and challenges:

- The most powerful laser in the world hitting various target materials for acceleration of multiple types of particles, all in the same time with different spatial and energy distribution;
- Broadband spectra of the generated radiation fields (from keV up to GeV);
- Mixed complex and ultra-short radiation fields:
- Intense electromagnetic pulse the need for shielding (e.g. Faraday cages) for every electronics inside, including detection systems;

Radiation protection and dosimetry approach during design, building, installation and commissioning phases

- Hp(10) < 2 mSv/year ;
- Equivalent dose to the lens of the eye, to the skin, to the extremities < 15 mSv/year;
- H*(10) rate outside of cold walls 1µSv/h;

Monte Carlo Simulations

- Primary accelerated particles as radiation Sources terms;
- Working Scenarios / pulse frequency;
- Shielding and beam dumps design;

Shielding & Working Scenario

- Up to 2m thick concrete walls;
- Customized beam dumps with magnetite, Al, Pb insertions;
- Initial scenario: 10 Hz @100TW, 1Hz @1PW and 0.017 Hz @10PW;

Dosimetry Monitoring

- Active monitoring (Radiation Monitoring System, B-RAD Spectrometers, Bonner Spheres System)
- Passive dosimetry (BeOSL, PADC detectors);

Radiation sources & scenarios considered for RP simulations

Experimental area & pulse frequency	Target Type	Source Term Carachteristics	Highest expected DR/ pulse values based on simulations, in different places of the building [µSv/h] – most of the time on the roof		
	Casaana	Electrons, 8.61E+10, 38 GeV – and associated bremstrahlung	0.5 9200		
E6 @ 10PW.	Gaseous	Photon (synchrotron), 1E+14 part/pulse, 10 MeV	52700		
0.0.17 Hz		Protons (TNSA), 6E+12 part/pulse, 40 MeV	-		
	Solid	Protons (RPA/BOA), 1.2E+12 part/pulse, 0.5 GeV	483		
		Electrons 10E+12, 0.145 MeV	13300		
E5 @ 1PW, 1 Hz	Solid	Protons, 7.57E+12 part/pulse, 2-60 MeV –average of 20 MeV	33500		
		Electrons, 3.08E+07			
		Electrons, 8.05E+7, 2 GeV	40		
	Gaseous	8.34E+13 for 0.035 MeV, 7.6E+12 for 0.58 MeV, 6.8E+10 for 8.8 MeV,	577000		

Radiation source terms considered in Fluka simulations for E6 (10 PW) and E5 (1 PW) areas * I.O. Mitu et al, RADIATION PROTECTION AND SAFETYAT ELI-NP

- Hot spots: roof and walls (hot side) > customized beam dumps have been designed; control access has been implemented.
- Secondary fields generated following the interaction of the primary field with the beam dumps have been seriously considered ;

Map representation of the dH*(10)/dt rate in µSv/h given by the proton source term in the horizontal section and neighboring areas, at the beam height level

* M.A. Popovici et al, RADIOLOGICAL PROTECTION CALCULATIONS OF THE ELI-NP 10 PW LASER EXPERIMENTAL AREA USING FLUKA CODE

Dosimetry equipment foreseen for ELI-NP fields and personnel monitoring

BeOSL dosemeters for gamma and X-rays dose monitoring

PADC detectors foreseen for neutron passive dosimetry

TASL System for PADC detectors analysis

SATURN 5702 - mobile station - two detectors for gamma and neutron dose rate monitoring.

Hand-held radiation survey meter for gamma radiation and DMC 3000 DR-meters

Bonner Spheres Spectrometer

1 PW experiments – E5 Case study: Solid Targets – post-accelerating protons

Detection setup

- ✤ BeOSL:
- 12 keV ÷ 7 MeV;
- $0.05 \text{ mSv} \div 10 \text{ Sv};$
- * NAUSICAA Ion Chamber:
- 30 keV ÷ 10 MeV;
- $10 \text{ nSv/h} \div 10 \text{ Sv/h};$
- Lupin Proportional Counter:
- Thermal ÷ 20 MeV;
- 10 nSv/h \div 100 mSv/h;

- 12 dosemeters placed in front of the flange;
- 22 dosemeters placed in the E5 experimental area, surrounding the interaction chamber; 5 of them on and around the Ion Chamber;
- NAUSICAA Ion Chamber and LUPIN Proportional Counter placed in front of the main flanche, along the beam axis / radiation field preferred / main direction;

Proportional Counter and Ion Chamber Results *Active Measurements*

• Active measurements provide an in-real-time visual and numerical overview on the differences between consecutive shots

Gamma Io	on Chamber	Neutrons	Prop. Counter	
Dose rate	Max Dose	Dose rate	Max Dose rate	
[µSv/h]	rate [µSv/h]	[µSv/h]	[µSv/h]	
58.9948	3530	0.2616	5.233	
99.4843	5960	0.405	8.1	Average gamma
93.4305	5600	0.178	3.567	H*(10) rate = 1.29 μSv/shot
41.6308	2490	0.011	0.113	Average neutron
108.145	6470	0.158	3.163	H*(10) rate = 1.17 nSv/shot
71.1173	4250	0.242	4.833	Day 1
68.4183	4090	0.223	4.4	
40.47	2400	0.498	9.967	Average gamma
13.091	662	0.0081	0.0326	H*(10) rate = 0.9 μSv/shot
159.916	6640	0.533	10.667	Day 2
81.695	4890	0.682	13.633	
28.464	1700	0.427	8.533	Average gamma
26.2743	1570	0.7	14	Day 3-4
163.441	9790	0.782	15.633	÷
186.88	11200	0.3	6	
185.436	11100	0.302	6.033	Average gamma H*(10) rate = 3.06 uSv/shot
181.398	10800	0.365	7.3	11 (10) 1ate - 5.00 µ59/800t
185.628	11000	0.447	8.933	Average neutron
187.054	11200	0.463	9.2	$H^{*}(10)$ rate = 2.06 nSv/shot Day 5
178.829	10700	0.6483	12.967	Day 5

The 50th Meeting on Radiation Protection, Hajdúszoboszló, Hungary, 7-9 of April, 2025

18:58 9/27/2

BeOSL Dosemeters Results **Passive Measurements**

Dose rate per pulse in front of the flange for different days of beamtime[µSv/pulse]

Dose rate per pulse around the interaction chamber on different days of beamtime[µSv/pulse]

Av. DR Day 1	Av. DR Day 2	Av. DR Day	Av. DR Day	Av. DR Day
[µSv/pulse]	[µSv/pulse]	3 [µSv/pulse]	4 [µSv/pulse]	5 [µSv/pulse]
2.315	1.596	1.268	3.573	5.218
3.429	2.118	1.274	0.678	4.689
4.316	0.033	2.054	3.128	6.755
2.762	2.638	2.056	2.460	4.156
0.041	0.556	1.264	2.239	4.162
1.156	0.555	2.445	2.460	4.167
0.489	0.035	1.265	2.014	4.682

DR Intercomparison between active and passive measurements

- Passive measurements results of DR/pulse are made on the approximation of a congruence of the pulses during a daily beamtime;
- Passive measurements results are characterized by 13% uncertainty, for a confidence interval of k=1;
- Change in value for a dosimeter on the same position from a day to another are justified by the experimental set-up change, the variation of pulses characteristics, or targets used;
- The considerable underestimation the lower energies represent the main component of the generated radiation field spectra + saturation effects;

10 PW experiments – E6

Case Study: Solid Targets – producing neutrons

Detection setup

Active Detectors and Dosemeters surrounding the interraction chamber

- 2 x 12 dosemeters placed in front of the flanges;
- ✤ 20 24 dosemeters placed in the E6 experimental area, surrounding the interaction chamber;
- NAUSICAA Ion Chamber and LUPIN Proportional Counter placed in front of the main flanche, along the beam axis;
- CR-39 (PADC) detectors with 11-12 mm Al layer placed inside of the interaction chamber;

Dosemeters placed in front of the flanges (0° and 90° compared to the beam direction)

Proportional Counter and Ion Chamber Results Active Measurements

Choose. 8/13/2024 8/13/2024 8/13/2024 8/13/2024 Image: Choose. Date and Image: Choose.	Gamma – M Ion Ch	NAUSICAA namber	Neutro Proporti	ns – LUPIN onal Counter		
	Dose rate [µSv/h]	Max Dose rate [µSv/h]	Dose rate [µSv/h]	Max Dose rate [µSv/h]		• Average laser beam energy = 243J almost 70% of the energy is reaching
160-		Da	ay 2			the target (after compression and
	185.315	11100	7.217	433		nlasma mirrors).
	208.723	12500	6.782	402	Average gamma	 Changing targets or using differen
	181.988	10900	7.05	423	$H^{*}(10)$ rate = 3.38 µSv/shot	targets combination led to radiation
	203.712	12200	7.25	435	Average neutron	level variations:
	212.078	12700	6.833	410	$H^*(10)$ rate = 0.12 µSv/shot	Neutron field is mostly generated by
0 11.2000 12/00/00 12:2000 13:00:00 13:00:00 14:00:00 14:00:00 15:00:00 15:00:00 16:00:00 16:00:00 17:00:00 17:00:00 18:00:00 18:00:00 19:00:0 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024 8/13/2024	213.751	12800	6.217	373		the (p.n) reaction on ²⁷ Al and/o
Currors: all plots	218.796	13100	9.261	554		other secondary sources;
ILEPT CUREs 11:2000 0F320204 0 SN 075 - Dose rate (Acquired data) ☑ II 0 uSv/h No com 0.079 uSv/h 0K 37.82 uSv Immition 2 - Dose rate (Acquired data) ☑ Immition 2 Immition 2<	Day 5					• The average gamma DR/shot from
	258.342	15400	8.683	521		passive measurements \in (5.98, 16.98
Choose. 100356 AM 🕮 80306 PM 🕮 😂 💾 LN 🔊 Date and 6 🖉 🛶 USUb 6 🖉 🖓 6	253.278	14800	6.05	363		μSv/shot;
	252.27	13300	5.767	346	Average gamma	• The ratio between the DR/sho
	244.066	14300	3.667	220	$H^{*}(10)$ rate = 4.05 µSV/snot	passive – active $\in (2.78, 4.0)!$
	245.567	14700	5.2	312	Average neutrons	_
	240.536	14400	3.7	222	H*(10) rate = 0.08 μSv/shot	
160-	252.291	15100	5.25	315		
	245.583	14700	4.167	250		
	240.549	14400	3.15	189		
		Da	ay 6			
	244.259	13800	6.233	374	Average gamma H*(10)	Targets combination
	250.105	9540	4.444	265	rate = $1.98 \mu Sv/shot$	lading to neutrons
0. 1990 12000 13:00:00 13:00:00 13:00:00 14:00:00 14:00:00 15:00:00 15:00:00 16:00:00 16:00:00 17:00:00 13:00:00 18:00	42.0728	2200	0.708	14.167		field production?
Date and time Cursors all plots	72.445	4220	9.233	554	Average neutrons $H^*(10)$	Leves he accerted
Iter curs Norm Output Iter curs Norm Output Other Iter curs Integral ✓ Integral Iter curs Integral ✓ Integral ✓ Integral ✓ Integral ✓ Integral ✓ Integral ✓ Integral ✓	110.522	5910	0.8901	15.267	Tate = $0.07 \ \mu S v/shot$	

BeOSL Dosemeters Results **Passive Measurements**

Average dose rate H*(10) per shot from passive measurements (in front of the flange) [µSv/shot]

Pos.	1	2	3	4	5	6	7	8	9	10	11	12	Avg.
Day 2	72.22	148.93	52.04	167.60	203.60	154.27	176.00	176.93	128.53	21.20	32.67	26.72	113.39
Day 4	307.90	328.90	82.06	457.90	397.90	346.90	418.90	442.90	245.68	67.60	70.30	61.00	268.99
Day 6	55.28	66.08	38.88	66.88	57.68	57.08	55.88	77.48	49.88	11.00	16.28	13.28	47.14

Top view of E6 area dosimetry mapping (Day 2, 9 shots and Day 4, 4 shots)

H*(10) values map in front of the flange

H*(10) for 9 shots (Day 2) @10PW

H*(10) for 4 shots (Day 4) @10PW

Conclusions and future perspectives

Active detectors are able to detect ultra-short pulsed radiation fields, but provide measurements of huge underestimation; specific tests need to be performed to accurately explain the underestimation. Can the working scenario can be gradually improved according to this data?

Even traceable to classical continuous radiation fields, in SSDL conditions, OSLs response is not dependent on the pulse duration, therefor they are a suitable technology to properly perform dosimetry characterization of ELI-NP generated pulsed fields; their response to high energy fields needs to be studied.

To have a better knowledge about the neutron component in active measurements, accurate passive measurements need to be performed. SSNTD system foreseen to be used in the upcoming experimental campaigns. Diamon spectrometer already integreted in the recent beamtimes.

Correlation can be improved by performing MC based simulations for each specific study case. More effort needs to be involved in accurately describing radiation source terms. This needs to be further confirmed/adjusted by the experimental results in the early phases, to enhance Fluka simulations and accuracy in fields estimations.

CLAR STREET,

The 50th Meeting on Radiation Protection, Hajdúszoboszló, Hungary, 7-9 of April, 2025

nuclear physics

"Let there be light!"